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Problem

Find (x , y) locations of objects.

Figure: Predictions marked in red.
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Standard Methods

Sliding Window Detector

1 Train window detector
2 Slide window over image

all positions
all orientations
all scales

3 Arbitrate overlapping detections

Good for few large objects (face in a portrait)

How to find many smaller objects?
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How do we find objects?

Pixel-based
find pixels of many objects

Beamer (2007-2009)

Location-based
make guesses of locations

HoS Boosting (late 2009-2010)
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What is object detection anyway?

Is finding 50% of the pixels in all objects the same as finding 100%
of the pixels in 50% of the objects?
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Location Boosting

Radically different approach

learns and predicts in (x , y) location space

combines ensemble of weak (x , y) location predictors into strong
predictor.

Contributions

new kind of model: each weak hypothesis is a meta-object detector.

new loss function: spatially motivated

adaBoost variant: provably minimize loss function every iteration
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combines ensemble of weak (x , y) location predictors into strong
predictor.

Contributions

new kind of model: each weak hypothesis is a meta-object detector.

new loss function: spatially motivated

adaBoost variant: provably minimize loss function every iteration

Hit-or-Shift (HoS) Boosting
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Definition

A weak hypothesis predicts locations on an image
h = {((x1, y1), c1),((x2, y2), c2), . . . , ((xn, yn), cn)}.

We filter away predictions with confidence lower than θ,
h(θ) = {((x , y), c) ∈ h and c ≥ θ}.

θ ≥ ∞

Figure: Illustrates how h(θ) changes as θ is lowered.
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Correlation

Definition

The correlation function is given by

C (u, v) =

∫

g

(

‖u− w‖2
r

)

g

(

‖v − w‖2
r

)

dw. (1)

We require 0 ≤ C (u, v) ≤ 1 and C (u, v) = C (v,u).
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Figure: Plots of (a) two overlapping quadratic bumps with centers u and v, (b)
the truncated quadratic kernel g as a function of distance d = ||u− v||2/r , and
(c) the correlation C .
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Objectness

Definition

The objectness of a location u for h’s predictions with confidence at least
θ is

f (u; θ) =
∑

v∈h(θ)

C (u, v) (2)

where C (u, v) quantifies the relatedness u and v.

x

Objectness at x: 0.0

Figure: Increasing objectness around object

Ideally

high objectness on objects

low objectness elsewhere
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Objectness

Definition

The objectness of a location u for h’s predictions with confidence at least
θ is

f (u; θ) =
∑

v∈h(θ)

C (u, v) (2)

where C (u, v) quantifies the relatedness u and v.

x

Objectness at x: 0.5

Figure: Increasing objectness around object

Ideally

high objectness on objects

low objectness elsewhere
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Objectness

Definition

The objectness of a location u for h’s predictions with confidence at least
θ is

f (u; θ) =
∑

v∈h(θ)

C (u, v) (2)

where C (u, v) quantifies the relatedness u and v.

x

Objectness at x: 0.8

Figure: Increasing objectness around object

Ideally

high objectness on objects

low objectness elsewhere
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Training Algorithm

Boosting-based learning, each iteration:

generate many weak hypotheses (grammar)

pick best and add to master rule

re-weight training data

repeat
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Shift

Issues

false positives - ”objectness” never reduced

lack of detections suggests absence of objects
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Shift

Issues

false positives - ”objectness” never reduced

lack of detections suggests absence of objects

Solution

let weak hypotheses predict negative objectness

same ”shift value” s at all uncorrelated locations

shift parameter s found analytically
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Hit-or-Shift (HoS) Framework

Definition

A hit-or-shift (HoS) weak hypothesis predicts positive carness when
f (x; θ) is positive, otherwise −s.

f ′(x) =

{

αf (x; θ) if f (x; θ) > 0,

−s if f (x; θ) = 0.
. (3)

Hit

Shift

Figure: Hit-or-shift Weak Hypothesis
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Hit-or-Shift (HoS) Framework

Definition

A hit-or-shift (HoS) master hypothesis is simply the cumulative
objectness given by all weak hypotheses,

Ht(x) =

t
∑

i=1

f ′i (x). (4)

(a) (b) (c)

Figure: Plots of (a) an image and its master hypothesis after (b) 10 iterations
and (c) 100 iterations.

Eads, Helmbold, Rosten (UCSC,LANL,Cam) Learning in Location Space ISSDM Day, October 18, 2010 13 / 20



Loss: Object and Background

Each boosting iteration minimizes a two-part loss, the loss at object
locations

Lobj =
∑

x∈obj

exp(−Ht(x)) (5)

and the loss at the background,

Lbg = b
∑

x∈bg

max {0, exp(Ht(x)) − 1}, (6)

where b is a trade-off parameter.
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Experiments

Car Detection

12 large images of Phoenix, AZ

300 cars labeled

split into three partitions

Face Labeling

1520 images of human faces

label parts of face

split into three partitions
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Scoring is ill-posed

Predicted Non-object Pixel

Predicted Object Pixel

Ground Truth Object Outline

(a) (b)

(c)

True Positive

False Positive

(d) (e)

(f)

Pixel classifications in (a) and (b) have about the same number of
correct pixels, is one better? (a) and (b) have many more pixels classified
correctly than (c), but (c) finds the center of the object.
Is one near miss (d) better than 10 near misses (e)? Are 5 correct hits (f)
better than 1 near miss (d)?
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Scoring Metric

Object

Counting

Tracking

Target Detection

Proximity Delineation

Object Delineation

Two scoring attributes:

1 delineation boundary: (a) object delineation (polygon) or (b)
proximity delineation (circle)

2 multiple detections penalty: whether to treat multiple
detections as false positives

For our scoring we used a circular delineation boundary and penalized
multiple detections.
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Results: Arizona Test Set
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Figure: Columns (a) and (b) show the precision/recall curves and average
precisions for quadratic overlap and cylindrical kernels.
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Results: Face Labelling
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Figure: Shows precision recall curves using Haar features for labeling different
parts of human faces.
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Conclusions

location-based approach more natural for object detection

easier data labeling
uniform treatment of weak/master hypotheses
uniform treatment of image (no subsampling)

quickly learns and sifts through uninteresting background

loss function directly tied to finding good locations

HoS weak hypotheses are structured for efficient optimization

can be used as a part detector

new algorithm: provably minimizes the loss at every iteration given a
new feature
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Future Work

Our latest work involves significant adaptations for large objects
new HoS detector based on SIFT features and vocabulary trees
polar offset learning: exploits scale information to quickly learn offsets
apply technique to PASCAL and CalTech data sets.
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